Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Methods Mol Biol ; 2778: 31-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478269

RESUMO

Transmembrane ß-barrel proteins reside in the outer membrane of Gram-negative bacteria and are thus in direct contact with the environment. Because of that, they are involved in many key processes stretching from cellular survival to virulence. Hence, they are an attractive target for the development of novel antimicrobials, in addition to being of fundamental biological interest. To study this class of proteins, they are often required to be expressed in Escherichia coli. Recombinant expression of ß-barrel proteins can be achieved using two fundamentally different strategies. The first alternative uses a complete coding sequence that includes a signal peptide for targeting the protein to its native cellular location, the bacterial outer membrane. The second alternative omits the signal peptide in the gene, leading to mislocalization and aggregation of the protein in the bacterial cytoplasm. These aggregates, called inclusion bodies, can be solubilized and the protein can be folded into its native form in vitro. In this chapter, we present example protocols for both strategies and discuss their advantages and disadvantages.


Assuntos
Proteínas de Escherichia coli , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/genética
2.
Methods Mol Biol ; 2778: 43-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478270

RESUMO

Numerous bioinformatics tools allow predicting the localization of membrane proteins in the outer or inner membrane of Escherichia coli with high precision. Nevertheless, it might be desirable to experimentally verify such predictions or to assay the correct localization of recombinant or mutated variants of membrane proteins. Here we describe two methods (preferential detergent solubilization and sucrose-gradient fractionation) that allow to fractionate Gram-negative bacterial membranes and subsequently to enrich inner or outer membrane proteins.


Assuntos
Escherichia coli , Proteínas de Membrana , Membrana Celular , Escherichia coli/genética , Bactérias Gram-Negativas , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias , Fracionamento Celular/métodos
3.
Methods Mol Biol ; 2778: 53-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478271

RESUMO

The SpyCatcher-SpyTag system has become a popular and versatile tool for protein ligation. It is based on a small globular protein (SpyCatcher) that binds to a 13-residue peptide (SpyTag), which subsequently leads to the formation of a covalent isopeptide bond. Thus, the reaction is essentially irreversible. Here, we describe how the SpyCatcher-SpyTag system can be used to label surface-exposed bacterial outer membrane proteins, e.g., for topology mapping or fluorescent time-course experiments. We cover using fluorescence measurements and microscopy to measure labeling efficiency using SpyCatcher fused with superfolder GFP in this chapter.


Assuntos
Proteínas de Membrana , Peptídeos , Proteínas de Membrana/genética , Peptídeos/química , Corantes
4.
Front Bioeng Biotechnol ; 12: 1342418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375452

RESUMO

Gram-negative bacterium Acinetobacter sp. Tol 5 exhibits high adhesiveness to various surfaces of general materials, from hydrophobic plastics to hydrophilic glass and metals, via AtaA, an Acinetobacter trimeric autotransporter adhesin Although the adhesion of Tol 5 is nonspecific, Tol 5 cells may have prefer materials for adhesion. Here, we examined the adhesion of Tol 5 and other bacteria expressing different TAAs to various materials, including antiadhesive surfaces. The results highlighted the stickiness of Tol 5 through the action of AtaA, which enabled Tol 5 cells to adhere even to antiadhesive materials, including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush with steric hindrance, and mica with an ultrasmooth surface. Single-cell force spectroscopy as an atomic force microscopy technique revealed the strong cell adhesion force of Tol 5 to these antiadhesive materials. Nevertheless, Tol 5 cells showed a weak adhesion force toward a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine (MPC) polymer-coated surface. Dynamic flow chamber experiments revealed that Tol 5 cells, once attached to the MPC polymer-coated surface, were exfoliated by weak shear stress. The underlying adhesive mechanism was presumed to involve exchangeable, weakly bound water molecules. Our results will contribute to the understanding and control of cell adhesion of Tol 5 for immobilized bioprocess applications and other TAA-expressing pathogenic bacteria of medical importance.

5.
Protein Expr Purif ; 215: 106409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040272

RESUMO

The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.


Assuntos
Proteínas de Escherichia coli , Vacinas , Yersiniose , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Yersinia ruckeri/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteômica , Vacinas/metabolismo , Proteínas de Escherichia coli/genética
6.
FEBS J ; 291(4): 761-777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953437

RESUMO

Poly-proline II helices are secondary structure motifs frequently found in ligand-binding sites. They exhibit increased flexibility and solvent exposure compared to the strongly hydrogen-bonded α-helices or ß-strands and can therefore easily be misinterpreted as completely unstructured regions with an extremely high rotational freedom. Here, we show that the adhesin YadA of Yersinia enterocolitica serotype O:9 contains a poly-proline II helix interaction motif in the N-terminal region. The motif is involved in the interaction of YadAO:9 with heparin, a host glycosaminoglycan. We show that the basic residues within the N-terminal motif of YadA are required for electrostatic interactions with the sulfate groups of heparin. Biophysical methods including CD spectroscopy, solution-state NMR and SAXS all independently support the presence of a poly-proline helix allowing YadAO:9 binding to the rigid heparin. Lastly, we show that host cells deficient in sulfation of heparin and heparan sulfate are not targeted by YadAO:9 -mediated adhesion. We speculate that the YadAO:9 -heparin interaction plays an important and highly strain-specific role in the pathogenicity of Yersinia enterocolitica serotype O:9.


Assuntos
Adesinas Bacterianas , Yersinia enterocolitica , Adesinas Bacterianas/química , Heparina/metabolismo , Espalhamento a Baixo Ângulo , Sorogrupo , Eletricidade Estática , Difração de Raios X , Yersinia enterocolitica/química , Yersinia enterocolitica/metabolismo
7.
Front Cell Infect Microbiol ; 13: 1125482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875521

RESUMO

α-helical coiled-coils are ubiquitous protein structures in all living organisms. For decades, modified coiled-coils sequences have been used in biotechnology, vaccine development, and biochemical research to induce protein oligomerization, and form self-assembled protein scaffolds. A prominent model for the versatility of coiled-coil sequences is a peptide derived from the yeast transcription factor, GCN4. In this work, we show that its trimeric variant, GCN4-pII, binds bacterial lipopolysaccharides (LPS) from different bacterial species with picomolar affinity. LPS molecules are highly immunogenic, toxic glycolipids that comprise the outer leaflet of the outer membrane of Gram-negative bacteria. Using scattering techniques and electron microscopy, we show how GCN4-pII breaks down LPS micelles in solution. Our findings suggest that the GCN4-pII peptide and derivatives thereof could be used for novel LPS detection and removal solutions with high relevance to the production and quality control of biopharmaceuticals and other biomedical products, where even minuscule amounts of residual LPS can be lethal.


Assuntos
Glicolipídeos , Lipopolissacarídeos , Domínios Proteicos , Saccharomyces cerevisiae
8.
Bioengineering (Basel) ; 10(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829672

RESUMO

Innovative point-of-care (PoC) diagnostic platforms are desirable to surpass the deficiencies of conventional laboratory diagnostic methods for bacterial infections and to tackle the growing antimicrobial resistance crisis. In this study, a workflow was implemented, comprising the identification of new aptamers with high affinity for the ubiquitous surface protein A2 (UspA2) of the bacterial pathogen Moraxella catarrhalis and the development of an electrochemical biosensor functionalized with the best-performing aptamer as a bioreceptor to detect UspA2. After cell-systematic evolution of ligands by exponential enrichment (cell-SELEX) was performed, next-generation sequencing was used to sequence the final aptamer pool. The most frequent aptamer sequences were further evaluated using bioinformatic tools. The two most promising aptamer candidates, Apt1 and Apt1_RC (Apt1 reverse complement), had Kd values of 214.4 and 3.4 nM, respectively. Finally, a simple and label-free electrochemical biosensor was functionalized with Apt1_RC. The aptasensor surface modifications were confirmed by impedance spectroscopy and cyclic voltammetry. The ability to detect UspA2 was evaluated by square wave voltammetry, exhibiting a linear detection range of 4.0 × 104-7.0 × 107 CFU mL-1, a square correlation coefficient superior to 0.99 and a limit of detection of 4.0 × 104 CFU mL-1 at pH 5.0. The workflow described has the potential to be part of a sensitive PoC diagnostic platform to detect and quantify M. catarrhalis from biological samples.

9.
J Biomed Mater Res B Appl Biomater ; 111(2): 354-365, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36063491

RESUMO

Enrichment and diagnosis tools for pathogens currently available are time consuming, thus the development of fast and highly sensitive alternatives is desirable. In this study, a novel approach was described that enables selective capture of bacteria expressing hydrolyzed collagen-binding adhesins with hydrolyzed collagen-coated magnetic nanoparticles (MNPs). This platform could be useful to shorten the time needed to confirm the presence of a bacterial infection. MNPs were synthesized by a simple two-step approach through a green co-precipitation method using water as solvent. These MNPs were specifically designed to interact with pathogenic bacteria by establishing a hydrolyzed collagen-adhesin linker. The bacterial capture efficacy of hydrolyzed collagen MNPs (H-Coll@MNPs) for bacteria expressing collagen binding adhesins was 1.3 times higher than that of arginine MNPs (Arg@MNPs), herein used as control. More importantly, after optimization of the MNP concentration and contact time, the H-Coll@MNPs were able to capture 95% of bacteria present in the samples. More importantly, the bacteria can be enriched within 30 min and the time for bacterial identification is effectively shortened in comparison to the "gold standard" in clinical diagnosis. These results suggest that H-Coll@MNPs can be used for the selective isolation of specific bacteria from mixed populations present, for example, in biological samples.


Assuntos
Infecções Bacterianas , Nanopartículas de Magnetita , Humanos , Magnetismo , Bactérias , Colágeno
10.
Microbiol Spectr ; 10(5): e0211722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36165788

RESUMO

Adhesion to host cells is the first and most crucial step in infections with pathogenic Gram-negative bacteria and is often mediated by trimeric autotransporter adhesins (TAAs). Bartonella henselae targets the extracellular matrix glycoprotein fibronectin (Fn) via the Bartonella adhesin A (BadA) attaching the bacteria to the host cell. The TAA BadA is characterized by a highly repetitive passenger domain consisting of 30 neck/stalk domains with various degrees of similarity. To elucidate the motif sequences mediating Fn binding, we generated 10 modified BadA constructs and verified their expression via Western blotting, confocal laser scanning, and electron microscopy. We analyzed their ability to bind human plasma Fn using quantitative whole-cell enzyme-linked immunosorbent assays (ELISAs) and fluorescence microscopy. Polyclonal antibodies targeting a 15-mer amino acid motif sequence proved to reduce Fn binding. We suggest that BadA adheres to Fn in a cumulative effort with quick saturation primarily via unpaired ß-strands appearing in motifs repeatedly present throughout the neck/stalk region. In addition, we demonstrated that the length of truncated BadA constructs correlates with the immunoreactivity of human patient sera. The identification of BadA-Fn binding regions will support the development of new "antiadhesive" compounds inhibiting the initial adherence of B. henselae and other TAA-expressing pathogens to host cells. IMPORTANCE Trimeric autotransporter adhesins (TAAs) are important virulence factors and are widely present in various pathogenic Gram-negative bacteria. TAA-expressing bacteria cause a wide spectrum of human diseases, such as cat scratch disease (Bartonella henselae), enterocolitis (Yersinia enterocolitica), meningitis (Neisseria meningitis), and bloodstream infections (multidrug-resistant Acinetobacter baumannii). TAA-targeted antiadhesive strategies (against, e.g., Bartonella adhesin A [BadA], Yersinia adhesin A [YadA], Neisseria adhesin A [NadA], and Acinetobacter trimeric autotransporter [Ata]) might represent a universal strategy to counteract such bacterial infections. BadA is one of the best characterized TAAs, and because of its high number of (sub)domains, it serves as an attractive adhesin to study the domain-function relationship of TAAs in the infection process. The identification of common binding motifs between TAAs (here, BadA) and their major binding partner (here, fibronectin) provides a basis toward the design of novel "antiadhesive" compounds preventing the initial adherence of Gram-negative bacteria in infections.


Assuntos
Bartonella henselae , Bartonella , Humanos , Bartonella henselae/genética , Bartonella henselae/metabolismo , Fibronectinas/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Aderência Bacteriana , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Fatores de Virulência/metabolismo
11.
Front Mol Biosci ; 9: 918480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911955

RESUMO

The outer membrane of Gram-negative bacteria acts as an additional diffusion barrier for solutes and nutrients. It is perforated by outer membrane proteins (OMPs) that function most often as diffusion pores, but sometimes also as parts of larger cellular transport complexes, structural components of the cell wall, or even as enzymes. These OMPs often have large loops that protrude into the extracellular environment, which have promise for biotechnological applications and as therapeutic targets. Thus, understanding how modifications to these loops affect OMP stability and folding is critical for their efficient application. In this work, the small outer membrane protein OmpX was used as a model system to quantify the effects of loop insertions on OMP folding and stability. The insertions were varied according to both hydrophobicity and size, and their effects were determined by assaying folding into detergent micelles in vitro by SDS-PAGE and in vivo by isolating the outer membrane of cells expressing the constructs. The different insertions were also examined in molecular dynamics simulations to resolve how they affect OmpX dynamics in its native outer membrane. The results indicate that folding of OMPs is affected by both the insert length and by its hydrophobic character. Small insertions sometimes even improved the folding efficiency of OmpX, while large hydrophilic inserts reduced it. All the constructs that were found to fold in vitro could also do so in their native environment. One construct that could not fold in vitro was transported to the OM in vivo, but remained unfolded. Our results will help to improve the design and efficiency of recombinant OMPs used for surface display.

12.
Biosensors (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005012

RESUMO

New point-of-care (POC) diagnosis of bacterial infections are imperative to overcome the deficiencies of conventional methods, such as culture and molecular methods. In this study, we identified new aptamers that bind to the virulence factor Yersinia adhesin A (YadA) of Yersinia enterocolitica using cell-systematic evolution of ligands by exponential enrichment (cell-SELEX). Escherichia coli expressing YadA on the cell surface was used as a target cell. After eight cycles of selection, the final aptamer pool was sequenced by high throughput sequencing using the Illumina Novaseq platform. The sequencing data, analyzed using the Geneious software, was aligned, filtered and demultiplexed to obtain the key nucleotides possibly involved in the target binding. The most promising aptamer candidate, Apt1, bound specifically to YadA with a dissociation constant (Kd) of 11 nM. Apt1 was used to develop a simple electrochemical biosensor with a two-step, label-free design towards the detection of YadA. The sensor surface modifications and its ability to bind successfully and stably to YadA were confirmed by cyclic voltammetry, impedance spectroscopy and square wave voltammetry. The biosensor enabled the detection of YadA in a linear range between 7.0 × 104 and 7.0 × 107 CFU mL−1 and showed a square correlation coefficient >0.99. The standard deviation and the limit of detection was ~2.5% and 7.0 × 104 CFU mL−1, respectively. Overall, the results suggest that this novel biosensor incorporating Apt1 can potentially be used as a sensitive POC detection system to aid the diagnosis of Y. enterocolitica infections. Furthermore, this simple yet innovative approach could be replicated to select aptamers for other (bacterial) targets and to develop the corresponding biosensors for their detection.


Assuntos
Técnicas Biossensoriais , Yersinia enterocolitica , Espectroscopia Dielétrica , Fatores de Virulência/metabolismo , Yersinia enterocolitica/metabolismo
13.
J Nanobiotechnology ; 20(1): 262, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672712

RESUMO

Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized 'biologically' through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico-chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.


Assuntos
Nanopartículas , Nanoestruturas , Agricultura , Catálise , Nanopartículas/química , Nanoestruturas/química , Plantas/química
14.
Microbiol Spectr ; 10(3): e0059822, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35435766

RESUMO

Bacterial adhesion to the host is the most decisive step in infections. Trimeric autotransporter adhesins (TAA) are important pathogenicity factors of Gram-negative bacteria. The prototypic TAA Bartonella adhesin A (BadA) from human-pathogenic Bartonella henselae mediates bacterial adherence to endothelial cells (ECs) and extracellular matrix proteins. Here, we determined the interaction between BadA and fibronectin (Fn) to be essential for bacterial host cell adhesion. BadA interactions occur within the heparin-binding domains of Fn. The exact binding sites were revealed by mass spectrometry analysis of chemically cross-linked whole-cell bacteria and Fn. Specific BadA interactions with defined Fn regions represent the molecular basis for bacterial adhesion to ECs and these data were confirmed by BadA-deficient bacteria and CRISPR-Cas knockout Fn host cells. Interactions between TAAs and the extracellular matrix might represent the key step for adherence of human-pathogenic Gram-negative bacteria to the host. IMPORTANCE Deciphering the mechanisms of bacterial host cell adhesion is a clue for preventing infections. We describe the underestimated role that the extracellular matrix protein fibronectin plays in the adhesion of human-pathogenic Bartonella henselae to host cells. Fibronectin-binding is mediated by a trimeric autotransporter adhesin (TAA) also present in many other human-pathogenic Gram-negative bacteria. We demonstrate that both TAA and host-fibronectin contribute significantly to bacterial adhesion, and we present the exact sequence of interacting amino acids from both proteins. Our work shows the domain-specific pattern of interaction between the TAA and fibronectin to adhere to host cells and opens the perspective to fight bacterial infections by inhibiting bacterial adhesion which represents generally the first step in infections.


Assuntos
Bartonella henselae , Bartonella , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Bartonella henselae/genética , Bartonella henselae/metabolismo , Adesão Celular , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Fibronectinas/metabolismo , Humanos , Sistemas de Secreção Tipo V/metabolismo
15.
Front Microbiol ; 13: 838267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197960

RESUMO

Bartonella henselae is the causative agent of cat scratch disease and other clinical entities such as endocarditis and bacillary angiomatosis. The life cycle of this pathogen, with alternating host conditions, drives evolutionary and host-specific adaptations. Human, feline, and laboratory adapted B. henselae isolates often display genomic and phenotypic differences that are related to the expression of outer membrane proteins, for example the Bartonella adhesin A (BadA). This modularly-structured trimeric autotransporter adhesin is a major virulence factor of B. henselae and is crucial for the initial binding to the host via the extracellular matrix proteins fibronectin and collagen. By using next-generation long-read sequencing we demonstrate a conserved genome among eight B. henselae isolates and identify a variable genomic badA island with a diversified and highly repetitive badA gene flanked by badA pseudogenes. Two of the eight tested B. henselae strains lack BadA expression because of frameshift mutations. We suggest that active recombination mechanisms, possibly via phase variation (i.e., slipped-strand mispairing and site-specific recombination) within the repetitive badA island facilitate reshuffling of homologous domain arrays. The resulting variations among the different BadA proteins might contribute to host immune evasion and enhance long-term and efficient colonisation in the differing host environments. Considering the role of BadA as a key virulence factor, it remains important to check consistently and regularly for BadA surface expression during experimental infection procedures.

16.
Adv Protein Chem Struct Biol ; 128: 113-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034717

RESUMO

The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of ß-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel ß-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the ß-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on ß-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.


Assuntos
Proteínas da Membrana Bacteriana Externa , Dobramento de Proteína , Bactérias , Bicamadas Lipídicas
17.
Front Bioeng Biotechnol ; 10: 1095057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698637

RESUMO

Cell immobilization is an important technique for efficiently utilizing whole-cell biocatalysts. We previously invented a method for bacterial cell immobilization using AtaA, a trimeric autotransporter adhesin from the highly sticky bacterium Acinetobacter sp. Tol 5. However, except for Acinetobacter species, only one bacterium has been successfully immobilized using AtaA. This is probably because the heterologous expression of large AtaA (1 MDa), that is a homotrimer of polypeptide chains composed of 3,630 amino acids, is difficult. In this study, we identified the adhesive domain of AtaA and constructed a miniaturized AtaA (mini-AtaA) to improve the heterologous expression of ataA. In-frame deletion mutants were used to perform functional mapping, revealing that the N-terminal head domain is essential for the adhesive feature of AtaA. The mini-AtaA, which contains a homotrimer of polypeptide chains from 775 amino acids and lacks the unnecessary part for its adhesion, was properly expressed in E. coli, and a larger amount of molecules was displayed on the cell surface than that of full-length AtaA (FL-AtaA). The immobilization ratio of E. coli cells expressing mini-AtaA on a polyurethane foam support was significantly higher compared to the cells with or without FL-AtaA expression, respectively. The expression of mini-AtaA in E. coli had little effect on the cell growth and the activity of another enzyme reflecting the production level, and the immobilized E. coli cells could be used for repetitive enzymatic reactions as a whole-cell catalyst.

18.
Methods Mol Biol ; 2412: 45-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34918241

RESUMO

In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the concept of reverse vaccinology. They all follow the same basic principles-mining available genome and proteome information for antigen candidates, and recombinantly expressing them for vaccine production. Some of the same principles have been used successfully for cancer therapy approaches. In this review, we focus on infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.


Assuntos
Genoma , Desenvolvimento de Vacinas , Vacinas , Vacinologia , Biologia Computacional , Epitopos/genética , Vacinas Sintéticas
19.
Front Microbiol ; 12: 741836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690987

RESUMO

Palladium (Pd), due to its unique catalytic properties, is an industrially important heavy metal especially in the form of nanoparticles. It has a wide range of applications from automobile catalytic converters to the pharmaceutical production of morphine. Bacteria have been used to biologically produce Pd nanoparticles as a new environmentally friendly alternative to the currently used energy-intensive and toxic physicochemical methods. Heavy metals, including Pd, are toxic to bacterial cells and cause general and oxidative stress that hinders the use of bacteria to produce Pd nanoparticles efficiently. In this study, we show in detail the Pd stress-related effects on E. coli. Pd stress effects were measured as changes in the transcriptome through RNA-Seq after 10 min of exposure to 100 µM sodium tetrachloropalladate (II). We found that 709 out of 3,898 genes were differentially expressed, with 58% of them being up-regulated and 42% of them being down-regulated. Pd was found to induce several common heavy metal stress-related effects but interestingly, Pd causes unique effects too. Our data suggests that Pd disrupts the homeostasis of Fe, Zn, and Cu cellular pools. In addition, the expression of inorganic ion transporters in E. coli was found to be massively modulated due to Pd intoxication, with 17 out of 31 systems being affected. Moreover, the expression of several carbohydrate, amino acid, and nucleotide transport and metabolism genes was vastly changed. These results bring us one step closer to the generation of genetically engineered E. coli strains with enhanced capabilities for Pd nanoparticles synthesis.

20.
mSystems ; 6(5): e0027121, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34581598

RESUMO

Streptococcus pyogenes is known to cause both mucosal and systemic infections in humans. In this study, we used a combination of quantitative and structural mass spectrometry techniques to determine the composition and structure of the interaction network formed between human plasma proteins and the surfaces of different S. pyogenes serotypes. Quantitative network analysis revealed that S. pyogenes forms serotype-specific interaction networks that are highly dependent on the domain arrangement of the surface-attached M protein. Subsequent structural mass spectrometry analysis and computational modeling of one of the M proteins, M28, revealed that the network structure changes across different host microenvironments. We report that M28 binds secretory IgA via two separate binding sites with high affinity in saliva. During vascular leakage mimicked by increasing plasma concentrations in saliva, the binding of secretory IgA was replaced by the binding of monomeric IgA and C4b-binding protein (C4BP). This indicates that an upsurge of C4BP in the local microenvironment due to damage to the mucosal membrane drives the binding of C4BP and monomeric IgA to M28. These results suggest that S. pyogenes has evolved to form microenvironment-dependent host-pathogen protein complexes to combat human immune surveillance during both mucosal and systemic infections. IMPORTANCE Streptococcus pyogenes (group A Streptococcus [GAS]), is a human-specific Gram-positive bacterium. Each year, the bacterium affects 700 million people globally, leading to 160,000 deaths. The clinical manifestations of S. pyogenes are diverse, ranging from mild and common infections like tonsillitis and impetigo to life-threatening systemic conditions such as sepsis and necrotizing fasciitis. S. pyogenes expresses multiple virulence factors on its surface to localize and initiate infections in humans. Among all these expressed virulence factors, the M protein is the most important antigen. In this study, we perform an in-depth characterization of the human protein interactions formed around one of the foremost human pathogens. This strategy allowed us to decipher the protein interaction networks around different S. pyogenes strains on a global scale and to compare and visualize how such interactions are mediated by M proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...